Tisdag: | 2301, 2302, 2304, 2305, 2306, 2308, 2310, 2311, 2312, 2313, 2315, 2316, 2319, 2321, |
Onsdag: | Arbete med Blandade uppgifter, Kapitel 2. |
Torsdag: | Matematiklektionen utgår pga Livskunskap |
Fredag: | Matematiklektionen utgår pga idrottsdag |
Veckans avsnitt handlar om formler. Egentligen tycker jag inte om ordet formel för att det kanske för tankarna till magi. Magi är visserligen spännande, men matematik och magi hör inte ihop! Ett bättre ord är samband.
Jag tar ett exempel: Ett samband mellan sträcka (s), tid (t) och hastighet (v) lyder . Detta kan skrivas om så att tiden eller hastigheten kan beräknas enligt och . Detta är alltså tre varianter på sambandet mellan sträcka, tid och hastighet eller, om man så vill, tre formler (vi säger att s, v och t är utlösta.
Du kommer att ha stor nytta av att kunna lösa ut storheter (t ex tid) ur ett samband. Att lösa ut något ur ett samband följer samma principer som ekvationslösning.
En viktig typ av samband är s.k rekursiva samband (se sid. 77 i Origo). Dessa används t ex om man har en talföljd eller ett mönster som man vill beskriva. Fördelen med de rekursiva sambanden är ofta att de ofta är enklare att konstruera för en given situation än de slutna sambanden (som är ”motsatsen” till rekursiva samband). Ett välkänt exempel på en rekursiv talföljd är Fibonaccis talföljd (se uppgift 2319 samt denna artikel på Wikipedia).